1	(i)	(A) P X = 10) = P(5 then 5) = $0.4 \times 0.25 = 0.1$	B1 ANSWER GIVEN	[1]
		(<i>B</i>) P $X = 30$) = P(10 and 20) = 0.4×0.25 + 0.2×0.5 = 0.2	M1 for full calculation A1 ANSWER GIVEN	[2]
	(ii)	$E(X) = 10 \times 0.1 + 15 \times 0.4 + 20 \times 0.1 + 25 \times 0.2 + 30 \times 0.2 = 20$ $E(X^{2}) = 100 \times 0.1 + 225 \times 0.4 + 400 \times 0.1 + 625 \times 0.2 + 900 \times 0.2 = 445$ Var(X) = 445 - 20 ² = 45	M1 for Σ rp (at least 3 terms correct) A1 CAO M1 for Σ r ² p (at least 3 terms correct) M1 dep for – their E (X) ² A1 FT their E(X) provided Var(X) > TOTAL	[5]

2 (i)	Mean $=\frac{126}{12} = 10.5$	B1 for mean	
	$Sxx = 1582 - \frac{126^2}{12} = 259$	M1 for attempt at Sxx	3
	$s = \sqrt{\frac{259}{11}} = 4.85$	A1 CAO	-
(ii)	New mean = 500 + 100 ×10.5 = 1550	B1 ANSWER GIVEN	
	New s = 100 ×4.85 = 485	M1A1FT	3
(iii)	On average Marlene sells more cars than Dwayne.	E1	
	Marlene has less variation in monthly sales than Dwayne.	E1FT	2
		TOTAL	8

3 (i)	E(X) = 25 because the distribution is symmetrical. Allow correct calculation of Σrp	E1 ANSWER GIVEN	1
(ii)	$E(X^{2}) = 10^{2} \times 0.2 + 20^{2} \times 0.3 + 30^{2} \times 0.3 + 40^{2} \times 0.2 = 730$ Var(X) = 730 - 25 ² = 105	M1 for Σr ² p (at least 3 terms correct) M1dep for – 25 ² A1 CAO	3
		TOTAL	

4 (i)	p = 0.55	B1 cao	1
(ii)	$E(X) = 0 \times 0.55 + 1 \times 0.1 + 2 \times 0.05 + 3 \times 0.05 + 4 \times 0.25 = 1.35$	M1 for Σrp (at least 3 non zero terms correct) A1 CAO(no 'n' or 'n-1' divisors)	
	$E(X^{2}) = 0 \times 0.55 + 1 \times 0.1 + 4 \times 0.05 + 9 \times 0.05 + 16 \times 0.25$ = 0 + 0.1 + 0.2 + 0.45 + 4	M1 for $\Sigma r^2 p$ (at least 3 non zero terms correct)	
	= (4.75)	M1dep for – their E(X) ² provided Var(X) > 0	
	Var(X) = 'their' $4.75 - 1.35^2 = 2.9275$ awfw (2.9275 - 2.93)	A1 cao (no 'n' or 'n-1' divisors)	5
(iii)	P(At least 2 both times) = $(0.05+0.05+0.25)^2 = 0.1225$ o.e.	M1 for $(0.05+0.05+0.25)^2$ or 0.35^2 seen A1cao: awfw (0.1225 - 0.123) or 49/400	2
		TOTAL	8

-			r
5	$X \sim B(50, 0.03)$		
(i)	(A) $P(X = 1) = {\binom{50}{1}} \times 0.03 \times 0.97^{49} = 0.3372$	M1 0.03×0.97^{49} or $0.0067(4)$	
	(B) $P(X = 0) = 0.97^{50} = 0.2181$ P(X > 1) = 1 - 0.2181 - 0.3372 = 0.4447	M1 $\binom{50}{1} \times pq^{49}$ (p+q =1) A1 CAO (awfw 0. 337 to 0. 3372) or 0.34(2s.f.) or 0.34(2d.p.) but not just 0.34 B1 for 0.97 ⁵⁰ or 0.2181 (awfw 0.218 to 0.2181) M1 for 1 - ('their' p (X = 0) + 'their' p(X = 1)) must have both probabilities A1 CAO	3
(::)		(awfw 0.4447 to 0.445)	
(ii)	Expected number = $np = 240 \times 0.3372 = 80.88 - 80.93 = (81)$ Condone $240 \times 0.34 = 81.6 = (82)$ but for M1 A1f.t.	M1 for 240× prob (A) A1FT	2
		TOTAL	8

6 (i)	Mean = 7.35 (or better)	B2cao $\sum fx = 323.5$	
	Standard deviation: 3.69 – 3.70 (awfw)	B2cao $\sum fx^2 = 2964.25$	
	Allow $s^2 = 13.62$ to 13.68	(B1) for variance s.o.i.o	
	Allow rmsd = $3.64 - 3.66$ (awfw)	(B1) for rmsd	
	After B0, B0 scored then if at least 4 correct mid-points seen or used.{1.5, 4, 6, 8.5, 15}	(B1) mid-points	
	Attempt of their mean = $\frac{\sum fx}{44}$, with $301 \le fx \le 346$ and fx	(B1) 6.84≤mean≤7.86	4
	strictly from mid-points not class widths or top/lower boundaries.		
(ii)	Upper limit = $7.35 + 2 \times 3.69 = 14.73$ or 'their sensible mean' + $2 \times$ 'their sensible s.d.'	M1 (with s.d. < mean)	
	So there could be one or more outliers	E1 dep on B2, B2 earned and comment	2
		TOTAL	6

(iii) (iii) $\int_{a}^{0.6} \int_{0.4}^{0.6} \int_{0.2}^{0.6} \int_{0.4}^{0.6} \int_{1}^{0.6} \int_{1}^{0.$	7 (i) (ii)	$E(X) = 1 \times 0.2 + 2 \times 0.16 + 3 \times 0.128 + 4 \times 0.512 = 2.952$ Division by 4 or other spurious value at end loses A mark $E(X^{2}) = 1 \times 0.2 + 4 \times 0.16 + 9 \times 0.128 + 16 \times 0.512 = 10.184$ Var(X) = 10.184 - 2.952 ² = 1.47 (to 3 s.f.) Expected cost = 2.952 × £45000 = £133000 (3sf)	M1 for Σ <i>rp</i> (at least 3 terms correct) A1 cao M1 for $\Sigma x^2 p$ at least 3 terms correct M1 for E(X^2) – E(X) ² Provided ans > 0 A1 FT their E(X) but not a wrong E(X^2) B1 FT (no extra multiples / divisors introduced at this	5
TOTAL 8	(iii)		G1 labelled linear scales	2