1	(i)	(A) $\mathrm{P} X=10)=\mathrm{P}(5$ then 5$)=0.4 \times 0.25=0.1$ (B) $\mathrm{P} X=30)=\mathrm{P}(10$ and 20$)=0.4 \times 0.25+0.2 \times 0.5=0.2$	B1 ANSWER GIVEN M1 for full calculation A1 ANSWER GIVEN	[1] [2]
	(ii)	$\begin{aligned} & \mathrm{E}(\mathrm{X})=10 \times 0.1+15 \times 0.4+20 \times 0.1+25 \times 0.2+30 \times 0.2=20 \\ & \mathrm{E}\left(\mathrm{X}^{2}\right)= \\ & \operatorname{Var}(\mathrm{X})=445-20^{2}=45 \end{aligned}$	M1 for Irp (at least 3 terms correct) A1 CAO M1 for $\Sigma r^{2} p$ (at least 3 terms correct) M1 dep for - their E (X $)^{2}$ A1 FT their $\mathrm{E}(\mathrm{X})$ provided Var(X) TOTAL	$[5]$ $[8]$

$\begin{array}{\|l} \hline \mathbf{2} \\ \text { (i) } \end{array}$	$\begin{aligned} & \text { Mean }=\frac{126}{12}=10.5 \\ & S x x=1582-\frac{126^{2}}{12}=259 \\ & s=\sqrt{\frac{259}{11}}=4.85 \end{aligned}$	B1 for mean M1 for attempt at Sxx A1 CAO	3
(ii)	New mean $=500+100 \times 10.5=1550$ New $\mathrm{s}=100 \times 4.85=485$	B1 ANSWER GIVEN M1A1FT	3
(iii)	On average Marlene sells more cars than Dwayne. Marlene has less variation in monthly sales than Dwayne.	$\begin{aligned} & \text { E1 } \\ & \text { E1FT } \end{aligned}$	2
		TOTAL	8

$\begin{aligned} & \hline 3 \\ & \text { (i) } \end{aligned}$	$E(X)=25$ because the distribution is symmetrical. Allow correct calculation of $\sum \mathrm{rp}$	E1 ANSWER GIVEN	1
(ii)	$\begin{aligned} & E\left(X^{2}\right)=10^{2} \times 0.2+20^{2} \times 0.3+30^{2} \times 0.3+40^{2} \times 0.2=730 \\ & \operatorname{Var}(X)=730-25^{2}=105 \end{aligned}$	M1 for $\Sigma r^{2} p$ (at least 3 terms correct) M1dep for -25^{2} A1 CAO	3
		TOTAL	

4 (i)	$p=0.55$	B1 cao	1
(ii)	$\begin{aligned} & \mathrm{E}(\mathrm{X})= \\ & \begin{aligned} 0 \times 0.55+1 \times 0.1+2 \times 0.05+3 \times 0.05+4 \times 0.25=1.35 \end{aligned} \\ & \begin{aligned} \mathrm{E}\left(\mathrm{X}^{2}\right) & =0 \times 0.55+1 \times 0.1+4 \times 0.05+9 \times 0.05+16 \times 0.25 \\ & =0+0.1+0.2+0.45+4 \\ & =(4.75) \end{aligned} \\ & \begin{aligned} \operatorname{Var}(\mathrm{X}) & =\text { 'their' } 4.75-1.35^{2}=2.9275 \text { awfw }(2.9275-2.93) \end{aligned} \end{aligned}$	M1 for $\Sigma r p$ (at least 3 non zero terms correct) A1 CAO(no ' n ' or ' $n-1$ ' divisors) M1 for $\Sigma r^{2} p$ (at least 3 non zero terms correct) M1dep for - their $E(X)^{2}$ provided $\operatorname{Var}(\mathrm{X})>0$ A1 cao (no ' n ' or ' $n-1$ ' divisors)	5
(iii)	$\mathrm{P}($ At least 2 both times $)=(0.05+0.05+0.25)^{2}=0.1225$ o.e.	```M1 for (0.05+0.05+0.25)}\mp@subsup{}{}{2 or 0.35' seen A1cao: awfw (0.1225 - 0.123) or 49/400```	2
		TOTAL	8

\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{aligned}
\& \hline \mathbf{5} \\
\& \text { (i) }
\end{aligned}
\] \& \begin{tabular}{l}
\[
X \sim \mathrm{~B}(50,0.03)
\] \\
(A) \(\quad \mathrm{P}(\boldsymbol{X}=1)=\binom{50}{1} \times 0.03 \times 0.97^{49}=0.3372\)
\[
\begin{aligned}
\& \text { (B) } \quad \mathrm{P}(\boldsymbol{X}=0)=0.97^{50}=0.2181 \\
\& \boldsymbol{P}(\boldsymbol{X}>1)=1-0.2181-0.3372=0.4447
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
M1 \(0.03 \times 0.97^{49}\) or 0.0067(4).... \\
M1 \(\binom{50}{1} \times p q^{49}(\mathrm{p}+\mathrm{q}\) =1) \\
A1 CAO \\
(awfw 0. 337 to 0.3372) or \\
0.34(2s.f.) or 0.34(2d.p.) but not just 0.34 \\
B1 for \(0.97^{50}\) or 0.2181 (awfw 0.218 to 0.2181) M1 for 1 - ('their' \(p(\mathrm{X}=0)+\) 'their' \(p(X=1)\)) must have both probabilities A1 CAO (awfw 0.4447 to 0.445)
\end{tabular} \& 3

3 \\

\hline (ii) \& Expected number $=n p=240 \times 0.3372=80.88-80.93=(81)$ Condone $240 \times 0.34=81.6=(82)$ but for M1 A1f.t. \& $$
\begin{aligned}
& \text { M1 for } 240 \times \operatorname{prob}(\mathrm{A}) \\
& \text { A1FT }
\end{aligned}
$$ \& 2 \\

\hline \& \& TOTAL \& 8 \\
\hline
\end{tabular}

$\begin{aligned} & \hline 6 \\ & \text { (i) } \end{aligned}$	Mean $=7.35$ (or better) Standard deviation: 3.69-3.70 (awfw) Allow s ${ }^{2}=13.62$ to 13.68 Allow rmsd = 3.64-3.66 (awfw) After B0, B0 scored then if at least 4 correct mid-points seen or used. $\{1.5,4,6,8.5,15\}$ Attempt of their mean $=\frac{\sum f x}{44}$, with $301 \leq f x \leq 346$ and fx strictly from mid-points not class widths or top/lower boundaries.	B2cao $\sum f x=323.5$ B2cao $\sum f x^{2}=2964.25$ (B1) for variance s.o.i.o (B1) for rmsd (B1) mid-points (B1) $6.84 \leq$ mean ≤ 7.86	4
(ii)	Upper limit $=7.35+2 \times 3.69=14.73$ or 'their sensible mean' $+2 \times$ 'their sensible s.d.' So there could be one or more outliers	M1 (with s.d. < mean) E1dep on B2, B2 earned and comment	2
		TOTAL	6

$\begin{aligned} & 7 \\ & \text { (i) } \end{aligned}$	$E(X)=1 \times 0.2+2 \times 0.16+3 \times 0.128+4 \times 0.512=2.952$ Division by 4 or other spurious value at end loses A mark $\begin{aligned} & E\left(X^{2}\right)=1 \times 0.2+4 \times 0.16+9 \times 0.128+16 \times 0.512=10.184 \\ & \operatorname{Var}(X)=10.184-2.952^{2}=1.47 \text { (to } 3 \text { s.f.) } \end{aligned}$	M1 for $\Sigma r p$ (at least 3 terms correct) A1 cao M1 for $\Sigma x^{2} p$ at least 3 terms correct M1 for $E\left(X^{2}\right)-E(X)^{2}$ Provided ans > 0 A1 FT their $\mathrm{E}(X)$ but not a wrong $E\left(X^{2}\right)$	5
(ii)	Expected cost $=2.952 \times £ 45000=£ 133000$ (3sf)	B1 FT (no extra multiples / divisors introduced at this stage)	1
(iii)		G1 labelled linear scales G1 height of lines	2
		TOTAL	8

